martes, 29 de enero de 2013






BASES GENERALES PARA EL DISEÑO Y SELECCIÓN DE TRANSFORMADORES DE CORRIENTE
La función de un transformador de corriente es la reducir a valores normales y no peligrosos, las características de corriente en un sistema eléctrico, con el fin de permitir el empleo de aparatos de medición normalizados, por consiguiente más económicos y que pueden manipularse sin peligro.
Un transformador de corriente es un transformador de medición, donde la corriente secundaria es, dentro de las condiciones normales de operación, prácticamente proporcional a la corriente primaria, y desfasada de ella un ángulo cercano a cero, para un sentido apropiado de conexiones.
El primario de dicho transformador está conectado en serie con el circuito que se desea controlar, en tanto que el secundario está conectado a los circuitos de corriente de uno o varios aparatos de medición, relevadores o aparatos análogos, conectados en serie.
Un transformador de corriente puede tener uno o varios devanados secundarios embobinados sobre uno o varios circuitos magnéticos separados.
Los factores que determinan la selección de los transformadores de corriente son:
- El tipo de Transformador de Corriente.
- El tipo de instalación.
- El tipo de aislamiento.
- La potencia nominal.
- La clase de precisión.
- El tipo de conexión.
- La Corriente Nominal Primaria.
- La Corriente Nominal Secundaria.
Tipo de Transformador de Corriente. Existen tres tipos de TC según su construcción:
a) Tipo devanado primario. Este como su nombre lo indica tiene mas de una vuelta en el primario. Los devanados primarios y secundarios están completamente aislados y ensamblados permanentemente a un núcleo laminado. Esta construcción permite mayor precisión para bajas relaciones.
b) Tipo Barra. Los devanados primarios y secundarios están completamente aislados y ensamblados permanentemente a un núcleo laminado. El devanado primario, consiste en un conductor tipo barra que pasa por la ventana de un núcleo.
c) Tipo Boquilla (Ventana o Bushing). El devanado secundario está completamente aislados y ensamblado permanentemente a un núcleo laminado. El conductor primario pasa a través del núcleo y actúa como devanado primario.
Tipo de Instalación. Los aparatos pueden ser construidos para ser usados en instalaciones interiores o exteriores. Generalmente, por razones de economía, las instalaciones de baja y media tensión, hasta 25 KV., son diseñadas para servicio interior. Las instalaciones de tipo exteriores son de tensiones desde 34.5 KV a 400 KV., salvo en los casos donde, por condiciones particulares se hacen instalaciones interiores para tensiones hasta 230 KV. Es conveniente examinar además, el tipo de TC que se pueda instalar, dependiendo de las facilidades de mantenimiento.
Tipo de Aislamiento. Los materiales que se utilizan. para el aislamiento dependen del voltaje del sistema al que se va a conectar, la tensión nominal de aislamiento debe ser al menos igual a la tensión mas elevada del sistema en que se utilice. Los tipos de aislamiento se divide en tres clases:
a) Material para baja tensión. Generalmente los TC's son construidos con aislamiento en aire o resina sintética, suponiéndose que lo común son las instalaciones interiores.
b) Material de media tensión. Los transformadores para instalaciones interiores (tensión de 3 a 25 KV) son construidos con aislamiento de aceite con envolvente de porcelana (diseño antiguo), o con resina sintética (diseño moderno).
Hay que hacer notar que la mayoría de los diseños actuales emplean el material seco, los aparatos con aislamiento en aceite o masa aislante (compound) se utilizan muy poco y sólo para instalaciones existentes.
Los aparatos para instalaciones exteriores son generalmente construidos con aislamiento porcelana-aceite, aunque la técnica más moderna está realizando ya aislamientos en seco para este tipo de transformadores.
c) Materiales para alta tensión. Los transformadores para alta tensión son aislados con papel dieléctrico, impregnados con aceite y colocados en una envolvente de porcelana.
Es importante definir la altitud de la instalación sobre el nivel del mar, ya que las propiedades dieléctricas de los materiales y del aire disminuyen con la altitud. Normalmente todos los equipos se diseñan para trabajar hasta 1000 Mts sobre el nivel del mar, si la altitud es mayor el nivel de aislamiento debe ser mayor.
Potencia Nominal. La potencia nominal que se debe seleccionar para los transformadores de medición, está en función de la utilización a que se destina el aparato.
Para escoger la potencia nominal de un transformador de corriente, se hace la suma de las potencias nominales de todos los aparatos conectados al secundario. Se debe tener en cuenta por otro lado, la impedancia de las líneas, si las distancias entre los transformadores y los instrumentos de medición, son importantes. Se escoge la potencia normal inmediata superior a la suma de las potencias. Los valores normales de las potencias de precisión y de sus factores de potencia, según ANSI, están dados en la Tabla G.1.

miércoles, 23 de enero de 2013


Trasnsformador de Potencia           








Esto te intereza!!!
            Un transformador de potencia es aquel que maneja grandes magnitudes de voltio amperios VA, los cuales se expresan en KVA [kilo voltio amperios] o en MVA [mega voltio amperios].

             Usualmente se considera un transformador de potencia cuando su capacidad es de un valor a partir de: 500 KVA, 750 KVA, 1000 KVA, 1250 KVA o 1.25 MVA, hasta potencias del orden de 500 MVA monofásicos y de 650 MVA trifásicos, 900 MVA. Estos últimos operan en niveles de voltaje de 500 KV, 525 KV y superiores.

           Generalmente estos transformadores están instalados en subestaciones para la distribución de la energía eléctrica. Efectuando la tarea intermediadora entre las grandes centrales de generación y los usuarios domiciliarios o industriales; que consiste en reducir los altos niveles de voltaje [con el cual es transmitida la energía] a magnitudes de voltaje inferiores, que permiten derivar circuitos a los usuarios en medias o bajas tensiones.

           También se da una aplicación similar, en las grandes centrales de generación, donde los transformadores de potencia, elevan los niveles de voltaje de la energía generada a magnitudes de voltaje superiores, con el objeto de transportar la energía eléctrica en las líneas de transmisión.

           Otros transformadores de potencia, realizan una función dedicada o cautiva, cuando alimentan un solo equipo exclusivamente. Por ejemplo en una industria pesada, un transformador toma energía a nivel de 34.500 Voltios (34,5 KV) y la transforma a 4.160 Voltios (4.16 KV), para alimentar un motor especial de 5.000 caballos (HP)